Portfolio item number 1
Short description of portfolio item number 1
Short description of portfolio item number 1
Short description of portfolio item number 2
A. S. Maxwell and C. Figueira de Morisson Faria. Phys. Rev. A, 92, 23421 (2015). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.92.023421
A. S. Maxwell and C. Figueira de Morisson Faria. J. Phys.: Conf. Ser., 635, 092136 (2015). https://iopscience.iop.org/article/10.1088/1742-6596/635/9/092136/meta
A. S. Maxwell and S. Brierley. Linear Algebra and Its Applications, 466, 296306 (2015) https://www.sciencedirect.com/science/article/pii/S0024379514006867
A. S. Maxwell and C. Figueira de Morisson Faria. Phys. Rev. Lett., 116, 143001 (2016) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.143001
A. S. Maxwell, A. Al-Jawahiry, T. Das and C. Figueria de Morisson Faria. Phys. Rev. A 96, 023420 (2017) https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.023420
A. S. Maxwell, A. Al-Jawahiry, X. Y. Lai and C. Figueria de Morisson Faria. J. Phys. B: At. Mol. Opt. Phys. 51, 044004 (2018) https://iopscience.iop.org/article/10.1088/1361-6455/aa9e81
A. S. Maxwell and C. Figueria de Morisson Faria. J. Phys. B: At. Mol. Opt. Phys. 51 124001 (2018) https://iopscience.iop.org/article/10.1088/1361-6455/aac164/pdf
A. S. Maxwell, C. Figueira de Morisson Faria and S. V. Popruzhenko. Phys. Rev. A 98, 063423 (2018) https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.063423
K. Amini, [et al. including A. S. Maxwell]. Rep. Prog. Phys. 82 116001 (2019) https://iopscience.iop.org/article/10.1088/1361-6633/ab2bb1/meta
A. C. Bray et al. 2020 J. Phys.: Conf. Ser. 1412 072021 https://iopscience.iop.org/article/10.1088/1742-6596/1412/7/072021/meta
A. S. Maxwell et al. J. Phys.: Conf. Ser. 1412, 072011 https://iopscience.iop.org/article/10.1088/1742-6596/1412/7/072011/meta
C. Figueira de Morisson Faria and A. S. Maxwell. Rep. Prog. in Phys. 83, 034401 (2020) https://iopscience.iop.org/article/10.1088/1361-6633/ab5c91/meta
H. P. Kang, A. S. Maxwell et al. Holographic detection of parity in atomic and molecular orbitals Phys. Rev. A 102, 13109 (2020) https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.013109
A. S. Maxwell, X. Y. Lai, R. P. Sun, X. J. Liu, C. Figueira de Morisson Faria Phys. Rev. A 102, 033111 (2020) https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.033111
A. Chacón, D. Kim, W. Zhu, S. P. Kelly, A. Dauphin, E. Pisanty, A. S. Maxwell, A. Picón, M. F. Ciappina, D. E. Kim, C. T., A. Saxena, and M. Lewenstein Phys. Rev. B 102, 134115 (2020) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.134115
A. S. Maxwell, A. Serafini, S. Bose, C. Figueira de Morisson Faria, Phys. Rev. A 103, 043519 (2021) https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.043519
A. S. Maxwell, G. S. J. Armstrong, M. F. Ciappina, E. Pisanty, Y. Kang, A. C. Brown, M. Lewenstein & C. Figueira de Morisson Faria, Faraday Discussions 228, 394-412 (2020) https://pubs.rsc.org/en/Content/ArticleLanding/2020/FD/D0FD00105H#!divAbstract
E. G. Neyra, P. Vaveliuk, E. Pisanty, A. S. Maxwell, M. Lewenstein and M. F. Ciappina, Phys. Rev. A 103, 053124 (2021) https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.053124
Y. Kang, E. Pisanty, M. Ciappina, M. Lewenstein, C. Figueira de Morisson Faria and A. S Maxwell, Eur. Phys. J. D 75: 199 (2021) https://epjd.epj.org/articles/epjd/abs/2021/07/10053_2021_Article_214/10053_2021_Article_214.html
Nicholas Werby, Andrew S. Maxwell, Ruaridh Forbes, Philip H. Bucksbaum and Carla Figueira de Morisson Faria, Phys. Rev. A 104, 013109 (2021) https://journals.aps.org/pra/abstract/10.1103/PhysRevA.104.013109
G. S. J. Armstrong, M. A. Khokhlova, M. Labeye, A. S. Maxwell, E. Pisanty and M. Ruberti, Eur. Phys. J. D 75: 209 (2021) https://epjd.epj.org/articles/epjd/abs/2021/07/10053_2021_Article_207/10053_2021_Article_207.html
A. C. Bray, A. S. Maxwell, Y. Kissin, M. Ruberti, M. F. Ciappina, V. Averbukh and C. Figueira De Morisson Faria, J. Phys. B: At. Mol. Opt. Phys. 54 194002 (2021) https://iopscience.iop.org/article/10.1088/1361-6455/ac2e4a
J. Rivera-Dean, Th. Lamprou, E. Pisanty, P. Stammer, A. F. Ordóñez, A. S. Maxwell, M. F. Ciappina, M. Lewenstein, and P. Tzallas Phys. Rev. A 105, 033714 (2022) https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.033714
Nicholas Werby, Andrew S. Maxwell, Ruaridh Forbes, Carla Figueira de Morisson Faria, Philip H. Bucksbaum Phys. Rev. A 106, 033118 (2022) https://journals.aps.org/pra/abstract/10.1103/PhysRevA.106.033118
A. S. Maxwell, L. B. Madsen and M. Lewenstein, Nat. Commun. 13, 4706 (2022). https://doi.org/10.1038/s41467-022-32128-z
M. Lewenstein, N. Baldelli, U. Bhattacharya, J. Biegert, M.F. Ciappina, U. Elu, T. Grass, P.T. Grochowski, A. Johnson, Th. Lamprou, A.S. Maxwell, A. Ordóñez, E. Pisanty, J. Rivera-Dean, P. Stammer, I. Tyulnev, P. Tzallas, arXiv:2208.14769 (2022) https://arxiv.org/abs/2208.14769
G. Kim, C. Hofmann, A. S. Maxwell, and C. Figueira de Morisson Faria, Phys. Rev. A 106, 043112 (2022) https://journals.aps.org/pra/abstract/10.1103/PhysRevA.106.043112
Javier Rivera-Dean, Philipp Stammer, Andrew S. Maxwell, Theocharis Lamprou, Andrés F. Ordóñez, Emilio Pisanty, Paraskevas Tzallas, Maciej Lewenstein, Marcelo F. Ciappina, arXiv:2211.00033 (2022) https://arxiv.org/abs/2211.00033
X. B. Planas, A. Ordóñez, M. Lewenstein and A. S. Maxwell Phys. Rev. Lett. 129, 233201 (2022) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.233201
Javier Rivera-Dean, Philipp Stammer, Andrew S. Maxwell, Theocharis Lamprou, Paraskevas Tzallas, Maciej Lewenstein, Marcelo F. Ciappina Phys. Rev. A 106, 063705 (2022) https://journals.aps.org/pra/abstract/10.1103/PhysRevA.106.063705
Philipp Stammer, Javier Rivera-Dean, Andrew Maxwell, Theocharis Lamprou, Andres Ordóñez, Marcelo F. Ciappina, Paraskevas Tzallas, Maciej Lewenstein, PRX Quantum 4, 010201 (2023) https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.4.010201
Tomasz Szołdra, Marcelo F. Ciappina, Nicholas Werby, Philip H. Bucksbaum, Maciej Lewenstein, Jakub Zakrzewski, Andrew S. Maxwell, arXiv:2303.13940 (2023). https://arxiv.org/abs/2303.13940
Utso Bhattacharya, Theocharis Lamprou, Andrew S. Maxwell, Andrés F. Ordóñez, Emilio Pisanty, Javier Rivera-Dean, Philipp Stammer, Marcelo F. Ciappina, Maciej Lewenstein and Paraskevas Tzallas, arXiv:2302.04692 (2023). https://arxiv.org/abs/2302.04692
Published:
Demonstration of interference effects present in non-sequential double ionisation.
Published:
Demonstration of interference effects present in non-sequential double ionisation.
Published:
Demonstration of interference effects present in non-sequential double ionisation.
Published:
Presenting the development of the Coulomb corrected method the CQSFA.
Published:
Demonstration of interference effects present in non-sequential double ionisation.
Published:
Presenting edited version of the CQSFA, which accounts for branch cuts in the integration contour.
Published:
Presentation of my PhD thesis work.
Published:
Presenting edited version of the CQSFA, which accounts for branch cuts in the integration contour.
Published:
Python class drop in session, example of how python can used in research
Published:
Motivated by advances in electron vortex states, which carry orbital angular momentum (OAM), we exploit conserved helicity inherent in photoelectrons carrying OAM from a chiral target to propose a new ultrafast chiral imaging technique, dubbed photoelectron vortex dichroism (PEVD). We theoretically demonstrate huge asymmetry in OAM-resolved photoelectron emission, sensitive to molecular chirality, for electrons ionized by strong linearly polarized fields.
Published:
I will discuss our new results on entanglement and orbital angular momentum (OAM) in non-sequential double ionization (NSDI). We demonstrate that there is entanglement in the OAM between the two photoelectrons in NSDI. Due to the quantization of OAM, this entanglement is easily quantified and has a simple physical interpretation in terms of conservation laws. Using the strong-field approximation, we quantify the entanglement for a large range of parameters, isolating the best targets for experimentalists. We also explore efficient methods to quantify and measure the entanglement, in particular by using an entanglement witness. Importantly, the methodology presented here could be applied to many other systems to help understand and exploit entanglement in attosecond processes.
Published:
We present a new highly enantio-sensitive effect that exploits the helicity in twisted photoelectrons ionized from a chiral target, dubbed photoelectron vortex dichroism (PEVD), which we proposed as a new ultrafast chiral imaging technique.
Published:
I will discuss our new results on entanglement and orbital angular momentum (OAM) in non-sequential double ionization (NSDI). We demonstrate that there is entanglement in the OAM between the two photoelectrons in NSDI. Due to the quantization of OAM, this entanglement is easily quantified and has a simple physical interpretation in terms of conservation laws. Using the strong-field approximation, we quantify the entanglement for a large range of parameters, isolating the best targets for experimentalists. We also explore efficient methods to quantify and measure the entanglement, in particular by using an entanglement witness. Importantly, the methodology presented here could be applied to many other systems to help understand and exploit entanglement in attosecond processes.
Undergraduate course, University 1, Department, 2014
This is a description of a teaching experience. You can use markdown like any other post.
Workshop, University 1, Department, 2015
This is a description of a teaching experience. You can use markdown like any other post.